High Quality RGB/NTSC Video:

Improving Video Quality in the Access Grid

Matthew Delco, Andrew I skandar, Lawrence Rowe Berkeley Multimedia Research Center University of California, Berkeley

Berkeley Video Projects

RTPtv

- Transmits "broadcast quality" television across an IP-based network (e.g., Internet2) using RTP
- Synchronized audio and video
 - Full frame/full quality video
 - High quality, RED-encoded audio

RGB capture

- Transmits high-quality, low-loss RGB images
- Eliminates the use of "scan conversion"

RTPtv

Matthew Delco Berkeley Multimedia Research Center University of California, Berkeley

RTPtv Technical Overview

- MJPEG ("motion JPEG") codec
 - NTSC or PAL, D1 or CIF size
- Video encoded/decoded using MJPEG board
- Constant bitrate mode: variable quality
 - D1 interlaced: 5-30Mbps (10-15Mbps typical)
 - CIF progressive: 1.5-10Mbps (5Mbps typical)
- Variable bitrate mode: fixed image quality
 - Bitrate generally ~10Mbps, but can be 3-13Mbps
- Reduced frame rate can be used
- Another method: send only every other field

RTPtv using Television

RTPtv using PC Monitor

D1 Interlaced Video

- Television video frame consists of two fields
- Rows of the two fields are combined/ interleaved to form a single video frame
- The first field is drawn, followed by the second

Odd Field

Combined Frame I mage

Access Grid Retreat 2002

CIF Progressive Video

- Transmit image that is 25% original size
 - Only one field is transmitted
 - Field is reduced horizontally 50%
- "Pixel Doubling" used to obtain a full-size image

Transmitting JPEG over IP

- To transmit JPEG over IP, image divided into pieces that can be sent over the network
 - Problem: vic drops entire frame if a single network packet is lost
 - Solution: use "restart markers"
- RTPtv substitutes lost data with corresponding video image from previous field
 - Open Mash vic to support partial frames (soon)
 - Other vics can't handle restart markers
 - RTP processing & JPEG decoder are noncompliant

RTPtv Hardware

- Video is encoded/decoded using MJPEG board
 - LML33 produced by Linux Media Labs (\$410)
 - up to four LML33 boards in a single PC
- LML33 Linux driver is available via GPL
 - RTPtv video currently operates only on a Linux PC
 - Driver enhanced to provide precise timestamps
- Software decoding of video is possible, but lower quality
- Open Mash vic
 - Can receive video up to 30fps for CIF
 - For D1, takes one field and line-doubles image

RTPtv Software

- RTPtv Software available in various forms
 - Separate command-line applications/daemons
 - Tcl/Tk GUI interface is available
 - RPC interface (TcI/DP syntax)
- Open Mash support for RTPtv/LML33
 - vic can receive and software decode the images
 - Support for restart markers is being refined
 - vic doesn't currently utilize the LML33 hardware
 - Bob Riddle (Internet2) is working on this

- Works today in Open Mash with Software Decoding
 - Requires significant CPU resources
 - P3/800 renders D1 @ 24 fps, CIF @ 30 fps
- LML33 Works in AG Capture Machine (Linux)
 - Can use for raw or compressed capture
 - Machine can also be used for receive/playback
- Hardware needed to scale to more streams
- I ssues with incorporating hardware with AG

Scenario #1: Present Situation

Problem: Restricted allocation of projectors

Scenario #2: AG Support Hardware Decoders

Frame Buffer

- Problem: Window GUI System Support
 - Need new hardware / software support? (Marvel G400)

Scenario #3: Introduce additional copies

Hardware

- Hardware needs to be smarter
 - Multimon support is doubtful
- DMAs / PCI bus can cause issues
- Dual bus, or faster bus, would help

Software

- "multicast tools" are not multi-threaded
- · CPU scheduler introduces jitter in rendering
- MPEG
 - Introduces latency
 - Decoders rely on hardware too

RGB Video

Andrew I skandar Berkeley Multimedia Research Center University of California, Berkeley

RGB Technical Overview

- PCs use RGB video (not equiv. to NTSC RGB)
- Video capture cards only support NTSC/PAL
- Solution: scan-convert RGB to NTSC or PAL
 - Problem: scan-conversion degrades quality
- Alt. solution: read out of PC's RGB frame buffer
 - Open Mash vic supports UNIX & MS Windows
 - Problem: requires software to run on local machine
 - PC owner may object to software installation
 - Software may not work on PC (e.g., OS X)

RGB Technical Overview

- Alt. solution: Multicast PowerPoint
 - Problem: Product specific; not supported by MS
- Alt. solution: download ppt, pdf, ps file
 - Problem: Viewer need to advance slides
- Alt. solution: find/make a RGB capture card

RGB Capture Card

- Datapath (Derby, UK)
 - VisionRGB Capture Card (\$1k)
 - Can capture 2 screens simultaneously
 - Driver / SDK available for MS Windows
 - 640x480, 800x600, 1024x768 (66Mpixel/sec)
 - I mage captured as 555, 565, or 888 pixels
 - up to 20 frames/second
 - Wire requirements:
 - RGB plus HSync and VSync
 - RGB with Sync on Green
 - VisionRGB-PRO card supports 1600x1200 (280Mp/sec) & "RGB with Composite Sync"

RGB Capture Software

- Open Mash allows RGB capture on MS Windows
- RGB capture handled the same as NTSC capture
 - Since images are large, JPEG codec is used
 - Future codec options: raw pixels, RLE, etc.
- Typically transmit 1 frame per second
- OM making improvements to JPEG software
 - DCT cache for improved encode performance
 - Restart markers / partial frames
- Some issues to be resolved
 - Software buggy, signal auto-detect, 5-pin RGB

Web Links

RTPtv

- Web page:
 - http://bmrc.berkeley.edu/~delco/rtptv/
- Technical report:
 - http://bmrc.berkeley.edu/papers/2001/161/
- Open Mash:
 - http://www.openmash.org/
- Linux Media Labs (JPEG hardware) web site:
 - http://www.linuxmedialabs.com/
- Datapath (RGB hardware) web site:
 - http://www.datapath.co.uk

High Quality RGB/NTSC Video:

Improving Video Quality in the Access Grid

Matthew Delco, Andrew I skandar, Lawrence Rowe Berkeley Multimedia Research Center University of California, Berkeley